Estimate Unlabeled-Data-Distribution for Semi-supervised PU Learning

نویسندگان

  • Haoji Hu
  • Chaofeng Sha
  • Xiaoling Wang
  • Aoying Zhou
چکیده

Traditional supervised classifiers use only labeled data (features/label pairs) as the training set, while the unlabeled data is used as the testing set. In practice, it is often the case that the labeled data is hard to obtain and the unlabeled data contains the instances that belong to the predefined class beyond the labeled data categories. This problem has been widely studied in recent years and the semi-supervised learning is an efficient solution to learn from positive and unlabeled examples(or PU learning). Among all the semi-supervised PU learning methods, it’s hard to choose just one approach to fit all unlabeled data distribution. This paper proposes an automatic KL-divergence based semi-supervised learning method by using unlabeled data distribution knowledge. Meanwhile, a new framework is designed to integrate different semi-supervised PU learning algorithms in order to take advantage of the former methods. The experimental results show that (1)data distribution information is very helpful for the semi-supervised PU learning method; (2)the proposed framework can achieve higher precision when compared with the-state-of-the-art method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Text Classification Using Positive and Unlabeled Data

Text classification using positive and unlabeled data refers to the problem of building text classifier using positive documents (P) of one class and unlabeled documents (U) of many other classes. U consists of positive and negative documents. Some existing methods for solving the PU-Learning problem are building a classifier in a two-step process. Generally speaking, these existing methods do ...

متن کامل

A generative adversarial framework for positive-unlabeled classification

In this work, we consider the task of classifying the binary positive-unlabeled (PU) data. The existing discriminative learning based PU models attempt to seek an optimal re-weighting strategy for U data, so that a decent decision boundary can be found. In contrast, we provide a totally new paradigm to attack the binary PU task, from perspective of generative learning by leveraging the powerful...

متن کامل

Semi-Supervised Classification Based on Classification from Positive and Unlabeled Data

Most of the semi-supervised classification methods developed so far use unlabeled data for regularization purposes under particular distributional assumptions such as the cluster assumption. In contrast, recently developed methods of classification from positive and unlabeled data (PU classification) use unlabeled data for risk evaluation, i.e., label information is directly extracted from unla...

متن کامل

Does Unlabeled Data Provably Help? Worst-case Analysis of the Sample Complexity of Semi-Supervised Learning

We study the potential benefits of unlabeled data to classification prediction to the learner. We compare learning in the semi-supervised model to the standard, supervised PAC (distribution free) model, considering both the realizable and the unrealizable (agnostic) settings. Roughly speaking, our conclusion is that access to unlabeled samples cannot provide sample size guarantees that are bett...

متن کامل

Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains

There has been increased interest in devising learning techniques that combine unlabeled data with labeled data – i.e. semi-supervised learning. However, to the best of our knowledge, no study has been performed across various techniques and different types and amounts of labeled and unlabeled data. Moreover, most of the published work on semi-supervised learning techniques assumes that the lab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012